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1. Building a Knowledge Assistant

2. RAG Overview: Basic RAG and where it goes wrong

3. Improving Data Quality: 
• Improve LLM reasoning over complex data

• Workshop: LlamaParse over Complex Documents

4. Improving Query Complexity: from RAG to agents 
• Workshop: LlamaParse-powered document agent

5. What’s next? 

2

Agenda
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Enterprise Use 
Cases
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Enterprise Use Cases

Document Processing
Tagging & Extraction

Knowledge Search & QA (RAG)

Conversational Agent Workflow Automation

Agent: …

Human: …

Agent: … 

Document

Topic:

Summary:

Author:

Knowledge 
Base

Answer: 
Sources: …

Workflow:
● Read latest messages 

from user A
● Send email suggesting 

next-steps

Inboxread

Email
write 
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Building a Knowledge Assistant

Agent: …

Human: …

Agent: … 

Knowledge 
Base

Answer: 
Sources: …

Human: <Question>

Human: …



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 6

Building a Knowledge Assistant

Agent: …

Human: …

Agent: … 

Knowledge 
Base

Answer: 
Sources: …

Human: <Question>

Human: … Goal: Build an interface that can 
take in any task as input and give 
back an output.

Input forms: simple questions, 
complex questions, research tasks

Output forms: short answer, 
structured output, research report
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RAG
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Retrieval Augmented Generation (RAG)
An overview of a RAG Pipeline

Data Parsing & Ingestion Data Querying

IndexData Data Parsing + 
Ingestion Retrieval LLM + 

Prompts Response
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Naive RAG

PyPDF
Sentence 
Splitting

Chunk Size 256

Simple QA 
Prompt

Dense Retrieval

Top-k = 5

IndexData Data Parsing + 
Ingestion Retrieval LLM + 

Prompts Response
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Challenges with 
Naive RAG
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Naive RAG approaches tend to work well for simple questions over a 
simple, small set of documents.

• “What are the main risk factors for Tesla?” (over Tesla 2021 10K) 

• “What did the author do during his time at YC?” (Paul Graham essay)

11

Easy to Prototype, Hard to Productionize
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Easy to Prototype, Hard to Productionize

But productionizing RAG over more questions and a larger set of data is 
hard!



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Failure Modes:

● Simple Questions over Complex Data
● Simple Questions over Multiple Documents
● Complex Questions 

13

Easy to Prototype, Hard to Productionize
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Failure Modes:

● Simple Questions over Complex Data
● Simple Questions over Multiple Documents
● Complex Questions 

14

Easy to Prototype, Hard to Productionize

The top priority goal should be figuring out how to get high-response 
quality from the set of representative questions you want to ask.
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Can we do more? 

In the naive setting, RAG is boring.

It’s just a glorified search system

There’s many questions/tasks that naive RAG can’t give an answer to.

Can we go beyond simple search/QA to building a general 
context-augmented research assistant? 

15
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Main Focus Areas

16

Improving Data Quality

IndexData Data Parsing + 
Ingestion Retrieval LLM + 

Prompts Response

Improving Query Complexity
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Improving Data 
Quality
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RAG is only as Good as your Data

Garbage in = garbage out

Good data quality is a necessary component of any production LLM app.

Raw Data Data 
Processing

Clean 
Data

Production LLM Apps

Q&A
Chat
Copilot
Autonomous Agents
Structured Extraction

19
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RAG is only as Good as your Data

20

Main Components of Data Processing:
● Parsing
● Chunking
● Indexing

IndexData Data Parsing + 
Ingestion Retrieval LLM + 

Prompts Response
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General Principles

21

Parsing: 

• Bad parsers are a key cause of garbage in == garbage out.
• Badly formatted text/tables confuse even the best LLMs

Chunking: 

• Try to preserve semantically similar content. 
• 5 Levels of Text Splitting

• Strong baseline: page-level chunking.

Indexing:

• Raw text oftentimes confuse the embedding model.
• Don’t just embed the raw text, embed references.
• Having multiple embeddings point to the same chunk is a good practice! 

https://x.com/GregKamradt/status/1699465826485862543
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Case Study: Complex Documents

22

A lot of documents can be classified 
as complex: 

• Embedded Tables, Charts, Images
• Irregular Layouts
• Headers/Footers

Naive RAG indexing pipelines fail over 
these documents.

Let’s build an advanced RAG indexing 
pipeline.
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Most PDF Parsing is Inadequate

Extracts into a 
messy format that is 
impossible to pass 
down into more 
advanced 
ingestion/retrieval 
algorithms.

23



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

LlamaParse

A special Document 
Parser designed to let you 
build RAG over Complex 
docs
https://github.com/run-
llama/llama_parse

24

https://github.com/run-llama/llama_parser
https://github.com/run-llama/llama_parser
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LlamaParse

Capabilities

Extracts tables / charts

Input natural language parsing 
instructions

JSON mode

Image Extraction

Support for ~10+ document types (.pdf, 
.pptx, .docx, .xml)

25
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LlamaParse Results

Expanded: https://drive.google.com/file/d/1fyQAg7nOtChQzhF2Ai7HEeKYYqdeWsdt/view?usp=sharing

26

https://drive.google.com/file/d/1fyQAg7nOtChQzhF2Ai7HEeKYYqdeWsdt/view?usp=sharing
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1. Use LlamaParse to parse a 
document into a semi-structured 
markdown representation (text + 
tables)

2. Use a markdown parser to extract 
out text and table chunks

3. Use an LLM to extract a summary 
from each table → link to 
underlying table chunk.

4. Index a graph of text and table 
chunks.

LlamaParse + Advanced Indexing

27
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https://github.com/run-
llama/llama_parse/blob/main/examples/demo_advanced.ipynb

Advanced Table Understanding

28

https://github.com/run-
llama/llama_parse/blob/main/exam
ples/demo_advanced.ipynb

https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb
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https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-
0b5sRXQYo?usp=sharing

Parsing Instructions 

29

https://colab.research.google.
com/drive/1dO2cwDCXjj9pS9
yQDZ2vjg-
0b5sRXQYo?usp=sharing

https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
https://colab.research.google.com/drive/1dO2cwDCXjj9pS9yQDZ2vjg-0b5sRXQYo?usp=sharing
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https://github.com/run-
llama/llama_parse/blob/main/examples/demo_json.ipynb

JSON Mode

30

https://github.com/run-
llama/llama_parse/blob/main/examples/demo_json.ipynb

https://github.com/run-llama/llama_parse/blob/main/examples/demo_json.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_json.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_json.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/demo_json.ipynb
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https://github.com/run-
llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipy
nb

RAG over Powerpoints

31

https://github.com/run-
llama/llama_parse/blob/main/examples/other_f
iles/demo_ppt_financial.ipynb

https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
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https://github.com/run-
llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipy
nb

Workshop

32

Let’s build a RAG pipeline with Databricks LLMs + local embeddings

https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
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Improving Query 
Complexity
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Complex Questions

There’s certain questions we want to ask where naive RAG will fail.

Examples:

• Summarization Questions: “Give me a summary of the entire <company> 10K annual 
report” 

34
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Complex Questions

There’s certain questions we want to ask where naive RAG will fail.

Examples:

• Summarization Questions: “Give me a summary of the entire <company> 10K annual 
report” 

• Comparison Questions: “Compare the open-source contributions of candidate A and 
candidate B”

35
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Complex Questions

There’s certain questions we want to ask where naive RAG will fail.

Examples:

• Summarization Questions: “Give me a summary of the entire <company> 10K annual 
report” 

• Comparison Questions: “Compare the open-source contributions of candidate A and 
candidate B”

• Structured Analytics + Semantic Search: “Tell me about the risk factors of the highest-
performing rideshare company in the US” 

36
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Complex Questions

There’s certain questions we want to ask where naive RAG will fail.

Examples:

• Summarization Questions: “Give me a summary of the entire <company> 10K annual 
report” 

• Comparison Questions: “Compare the open-source contributions of candidate A and 
candidate B”

• Structured Analytics + Semantic Search: “Tell me about the risk factors of the highest-
performing rideshare company in the US” 

• General Multi-part Questions: “Tell me about the pro-X arguments in article A, and tell 
me about the pro-Y arguments in article B, make a table based on our internal style 
guide, then generate your own conclusion based on these facts.”

37
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RAGQuery Response

From RAG to Agents

38
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RAGQuery Response

From RAG to Agents

Single-shot
No query understanding/planning
No tool use 
No reflection, error correction
No memory (stateless)

39
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Multi-turn
Query / task planning layer 
Tool interface for external 

environment
Reflection
Memory for personalization

Agent RAGQuery Response

From RAG to Agents

Tool

Tool

Tool

40
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Full AgentsAgent Ingredients

From Simple to Advanced Agents

Simple
Lower Cost
Lower Latency

Advanced
Higher Cost
Higher Latency

Routing

One-Shot Query 
Planning

Tool Use

ReAct

Dynamic 
Planning + 
Execution

Conversation 
Memory

41
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Routing

Simplest form of agentic 
reasoning.

Given user query and set of 
choices, output subset of 
choices to route query to.

42
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Routing

Use Case: Joint QA and 
Summarization

Guide

43

https://docs.llamaindex.ai/en/stable/module_guides/querying/router/root.html#routers
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Conversation Memory

In addition to current query, take into account conversation history as 
input to your RAG pipeline.

44
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Conversation Memory

How to account for 
conversation history in a RAG 
pipeline?

• Condense question

• Condense question + 
context

45
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Query Planning

Break down query into 
parallelizable sub-queries.

Each sub-query can be 
executed against any set of 
RAG pipelines

Uber 10-K chunk 4

top-2

Uber 10-K chunk 8

Lyft 10-K chunk 4

Lyft 10-K chunk 8

Compare revenue growth of 
Uber and Lyft in 2021

Uber 10-K

Lyft 10-K

Describe revenue growth 
of Uber in 2021

Describe revenue 
growth of Lyft in 2021

top-2

46
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Query Planning

Example: Compare 
revenue of Uber and Lyft 
in 2021

Query Planning Guide
Uber 10-K chunk 4

top-2

Uber 10-K chunk 8

Lyft 10-K chunk 4

Lyft 10-K chunk 8

Compare revenue growth of 
Uber and Lyft in 2021

Uber 10-K

Lyft 10-K

Describe revenue growth 
of Uber in 2021

Describe revenue 
growth of Lyft in 2021

top-2

47

https://docs.llamaindex.ai/en/stable/examples/query_engine/sub_question_query_engine.html
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Tool Use

Use an LLM to call an API

Infer the parameters of that 
API

48
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Tool Use

In normal RAG you just pass 
through the query.

But what if you used the LLM 
to infer all the parameters for 
the API interface?

A key capability in many QA 
use cases (auto-retrieval, 
text-to-SQL, and more)

49
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Let’s put them together

• All of these are agent ingredients

• Let’s put them together for a full agent system
• Query planning
• Memory
• Tool Use

• Let’s add additional components
• Reflection
• Controllability
• Observability

50
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Core Components of a Full Agent

Minimum necessary 
ingredients:
● Query planning
● Memory
● Tool Use

51
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Agent Reasoning Loops

52

Sequential: Generate next step given previous steps (chain-of-thought 
prompt)

DAG-based planning (deterministic): Generate a deterministic DAG of 
steps. Replan if steps don’t reach desired state. 

Tree-based planning (stochastic): Sample multiple future states at each 
step. Run Monte-Carlo Tree Search (MCTS) to balance exploration vs. 
exploitation.
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Agent Reasoning: Sequential

ReAct: Chain-of-thought and tool use 
through prompting.

Function Calling Loop: Call LLM Function 
Calling APIs in a loop until done.

ReAct + RAG Guide

Function Calling Anthropic Agent

53

https://docs.llamaindex.ai/en/stable/examples/agent/react_agent_with_query_engine.html
https://docs.llamaindex.ai/en/stable/examples/agent/anthropic_agent/?h=function+calling
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Agent Reasoning: DAG-based Planning

LLM Compiler (Kim et al. 
2023): An agent compiler 
for parallel multi-function 
planning + execution.

LLMCompiler Agent

Structured Planner Agent

54

https://llamahub.ai/l/llama_packs-agents-llm_compiler?from=llama_packs
https://docs.llamaindex.ai/en/stable/examples/agent/structured_planner/?h=structured+p
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Agent Reasoning: Tree-based Planning

Tree of Thoughts (Yao et 
al. 2023)

Reasoning via Planning 
(Hao et al. 2023)

Language Agent Tree 
Search (Zhou et al. 2023)

LATS Guide

55

https://docs.llamaindex.ai/en/stable/examples/agent/lats_agent/
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Self-Reflection

Use feedback to improve agent 
execution and reduce errors 

Human feedback

LLM feedback

Use few-shot examples instead of 
retraining the model! 

Reflexion: Language Agents with Verbal Reinforcement Learning, by Shinn et al. (2023)

56
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Additional Requirements
• Observability: see the full trace of the agent

• Observability Guide
• Control: Be able to guide the intermediate steps of an agent step-by-step

• Lower-Level Agent API
• Customizability: Define your own agentic logic around any set of tools.

• Custom Agent Guide
• Custom Agent with Query Pipeline Guide

• Multi-agents: Define multi-agent interactions! 
• Synchronously: Define an explicit flow between agents
• Asynchronously: Treat each agent as a microservice that can communicate with 

each other.
• Upcoming in LlamaIndex! 

• Current Frameworks: Autogen, CrewAI 

57

https://docs.llamaindex.ai/en/stable/module_guides/observability/observability.html#arize-phoenix
https://docs.llamaindex.ai/en/stable/module_guides/deploying/agents/agent_runner.html
https://docs.llamaindex.ai/en/stable/examples/agent/custom_agent.html
https://docs.llamaindex.ai/en/stable/examples/agent/agent_runner/query_pipeline_agent.html
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https://github.com/run-
llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipy
nb

Workshop

58

Let’s extend our RAG pipeline into an agent!

https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/other_files/demo_ppt_financial.ipynb
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